nūhou1.jpg

Ka 'ilikai o ka Ultrasoft Contact Lens Materials me ka Nanoindentation Atomic Force Microscopy

Mahalo no kou kipa ʻana iā Nature.com. Ke hoʻohana nei ʻoe i kahi polokalamu kele pūnaewele me ke kākoʻo CSS palena ʻole. No ka ʻike maikaʻi loa, manaʻo mākou e hoʻohana i kahi polokalamu kele pūnaewele hou (a i ʻole e hoʻopau i ke ʻano Compatibility Mode ma Internet Explorer). Eia kekahi, e hōʻoia i ke kākoʻo mau, hōʻike mākou i ka pūnaewele me ka ʻole o nā styles a me JavaScript.
Hōʻike i kahi carousel o ʻekolu paheʻe i ka manawa hoʻokahi. E hoʻohana i nā pihi Mua a me Next no ka neʻe ʻana i ʻekolu paheʻe i ka manawa, a i ʻole e hoʻohana i nā pihi paheʻe ma ka hopena e neʻe i ʻekolu mau paheʻe i ka manawa.
Me ka hoʻomohala ʻana o nā mea ultra-soft hou no nā lāʻau lapaʻau a me nā noi biomedical, ʻo ka hōʻike piha ʻana o kā lākou mau waiwai kino a me nā ʻano mechanical he mea nui a paʻakikī. Ua hoʻohana ʻia kahi ʻenehana nanoindentation atomic force microscopy (AFM) i hoʻololi ʻia e ʻike i ka modulus haʻahaʻa haʻahaʻa loa o ka lehfilcon hou A biomimetic silicone hydrogel contact lens i uhi ʻia me kahi papa o nā hale polimer polimer branched. Hāʻawi kēia ʻano hana i ka hoʻoholo pololei ʻana i nā wahi pili me ka ʻole o nā hopena o ka extrusion viscous i ka wā e hoʻokokoke ana i nā polymers branched. Eia kekahi, hiki iā ia ke hoʻoholo i nā hiʻohiʻona mechanical o nā mea palaki pākahi me ka ʻole o ka hopena o ka poroelasticity. Loaʻa kēia ma ke koho ʻana i kahi ʻimi AFM me kahi hoʻolālā (ka nui o ka tip, geometry a me ka nui o ka puna) i kūpono loa no ke ana ʻana i nā waiwai o nā mea palupalu a me nā laʻana olaola. Hoʻomaikaʻi kēia ʻano hana i ka naʻau a me ka pololei no ke ana pololei ʻana o ka mea palupalu loa lehfilcon A, nona ka modulus haʻahaʻa haʻahaʻa o ka elasticity ma ka ʻili (a hiki i 2 kPa) a me ka elasticity kiʻekiʻe loa i loko (kokoke 100%) kaiapuni wai. . ʻAʻole i hōʻike wale ʻia nā hopena o ka noiʻi ʻili i ka ʻili o ka lehfilcon A, akā ua hōʻike pū ʻia ka modulus o nā pulu polimer lālā i hoʻohālikelike ʻia me ka substrate silicon-hydrogen. Hiki ke hoʻohana ʻia kēia ʻenehana hōʻikeʻike ʻili i nā mea ʻē aʻe ultra-soft a me nā mea lapaʻau.
Hoʻoholo pinepine ʻia nā ʻano mechanical o nā mea i hoʻolālā ʻia no ka hoʻopili pololei ʻana me ka ʻiʻo ola e ke kaiaola olaola. ʻO ka hoʻohālikelike kūpono o kēia mau waiwai waiwai e kōkua i ka hoʻokō ʻana i nā hiʻohiʻona lapaʻau i makemake ʻia o ka mea me ka ʻole o ka hoʻopiʻi ʻana i nā pane kelepona ʻino1,2,3. No ka nui o nā mea homogeneous, he maʻalahi keʻano o nā mea mechanical ma muli o ka loaʻaʻana o nā kaʻina hana maʻamau a me nāʻano ho'āʻo (e like me ka microindentation4,5,6). Eia nō naʻe, no nā mea ʻoluʻolu loa e like me nā gels, hydrogels, biopolymers, cell living, etc., ʻaʻole pili kēia mau ʻano hoʻāʻo ma muli o nā palena hoʻonā ana a me ka inhomogeneity o kekahi mau mea7. I loko o nā makahiki, ua hoʻololi a hoʻololi ʻia nā ʻano hana indentation kuʻuna e hōʻike i kahi ākea o nā mea palupalu, akā nui nā ʻano hana i pilikia i nā hemahema koʻikoʻi e kaupalena ana i kā lākou hoʻohana8,9,10,11,12,13. ʻO ka nele o nā ʻano hana hoʻāʻo kūikawā hiki ke hōʻike pololei a hilinaʻi i nā waiwai mechanical o nā mea supersoft a me nā papa o luna e kaupalena nui i kā lākou hoʻohana ʻana i nā noi like ʻole.
I kā mākou hana ma mua, ua hoʻolauna mākou i ka lehfilcon A (CL) contact lens, kahi mea heterogeneous palupalu me nā waiwai ʻili ultra-soft a pau i loaʻa mai nā hoʻolālā biomimetic i hoʻoulu ʻia e ka ʻili o ka ʻili o ka maka. Ua hoʻomohala ʻia kēia biomaterial ma ke kālai ʻana i kahi lālā polymer i hoʻopili ʻia, cross-linked polymer layer o poly(2-methacryloyloxyethylphosphorylcholine (MPC)) (PMPC) ma luna o kahi silicone hydrogel (SiHy) 15 i hoʻolālā ʻia no nā mea lapaʻau e pili ana. Hoʻokumu kēia kaʻina hana grafting i kahi papa ma luna o ka ʻili i loaʻa i kahi ʻano polimer polimer palupalu palupalu loa a me ka elastic branched. Ua hōʻoia kā mākou hana mua e hāʻawi ka biomimetic structure o lehfilcon A CL i nā waiwai o ka ʻili maikaʻi e like me ka hoʻomaikaʻi ʻana i ka pulu a me ka pale ʻana i ka fouling, hoʻonui i ka lubricity, a me ka hoʻemi ʻana o ka cell a me ka adhesion bacteria15,16. Eia kekahi, ʻo ka hoʻohana ʻana a me ka hoʻomohala ʻana i kēia mea biomimetic e hōʻike ana i ka hoʻonui hou ʻana i nā mea biomedical ʻē aʻe. No laila, he mea koʻikoʻi ka ʻike ʻana i nā ʻano o ka ʻili o kēia mea ultra-soft a hoʻomaopopo i kona pilina mechanical me ka maka i mea e hana ai i kumu ʻike piha e kākoʻo i nā hoʻomohala a me nā noi e hiki mai ana. ʻO ka hapa nui o nā lens contact SiHy i kūʻai ʻia me kahi hui like ʻole o nā polymers hydrophilic a me hydrophobic e hana ana i kahi ʻano mea like ʻole17. Ua mālama ʻia kekahi mau haʻawina e noiʻi i kā lākou mau waiwai mechanical me ka hoʻohana ʻana i nā ʻano hoʻokolohua kuʻuna, tensile a me microindentation hoʻokolohua18,19,20,21. Eia nō naʻe, ʻo ka hoʻolālā biomimetic hou o lehfilcon A CL e hoʻolilo iā ia i mea ʻokoʻa like ʻole kahi i ʻokoʻa nui ai nā ʻano mechanical o nā hale polimer polimer branched me nā mea o ka substrate base SiHy. No laila, paʻakikī loa ka helu pono ʻana i kēia mau waiwai me ka hoʻohana ʻana i nā ʻano hana maʻamau a indentation. Hoʻohana ʻia kahi ʻano hoʻohiki i ke ʻano hoʻāʻo nanoindentation i hoʻokō ʻia ma ka atomic force microscopy (AFM), kahi ʻano i hoʻohana ʻia e hoʻoholo ai i nā waiwai mechanical o nā mea viscoelastic palupalu e like me nā cell biological a me nā ʻiʻo, a me nā polymers palupalu22,23,24,25. . ,26,27,28,29,30. I ka AFM nanoindentation, ua hui pū ʻia nā kumu o ka hoʻāʻo ʻana i ka nanoindentation me nā holomua hou loa i ka ʻenehana AFM e hāʻawi i ka hoʻonui ʻana i ke ana ʻana a me ka hoʻāʻo ʻana i kahi ākea o nā mea supersoft inherently31,32,33,34,35,36. Eia kekahi, hāʻawi ka ʻenehana i nā pono nui ʻē aʻe ma o ka hoʻohana ʻana i nā geometries like ʻole. indenter a me ka probe a me ka hiki ke ho'āʻo ma nā ʻano media wai.
Hiki ke hoʻokaʻawale ʻia ka nanoindentation AFM i ʻekolu mau mea nui: (1) nā mea hana (sensors, detectors, probes, etc.); (2) nā ʻāpana ana (e like me ka ikaika, ka neʻe ʻana, ka wikiwiki, ka nui o ka ramp, etc.); (3) Hoʻoponopono ʻikepili (hoʻoponopono kumu, manaʻo kikoʻī kikoʻī, hoʻopili ʻikepili, hoʻohālike, etc.). ʻO kahi pilikia nui me kēia ʻano, ʻo ia ka nui o nā haʻawina i ka palapala e hoʻohana ana i ka AFM nanoindentation hōʻike i nā hopena quantitative ʻokoʻa loa no ka laʻana like / cell / material type37,38,39,40,41. Eia kekahi laʻana, Lekka et al. Ua aʻo ʻia a hoʻohālikelike ʻia ka mana o ka AFM probe geometry ma ke ana ʻana o Young modulus o nā laʻana o ka hydrogel homogeneous mechanically a me nā cell heterogeneous. Hōʻike lākou e hilinaʻi nui ʻia nā waiwai modulus i ke koho cantilever a me ke ʻano tip, me ka waiwai kiʻekiʻe loa no kahi ʻano pyramid probe a me ka haʻahaʻa haʻahaʻa o 42 no ka spherical probe. Pēlā nō, ʻo Selhuber-Unkel et al. Ua hōʻike ʻia ke ʻano o ka wikiwiki indenter, ka nui indenter a me ka mānoanoa o nā laʻana polyacrylamide (PAAM) i ka modulus o Young i ana ʻia e ACM43 nanoindentation. ʻO kekahi kumu paʻakikī ʻo ka nele o nā mea hoʻāʻo modulus haʻahaʻa haʻahaʻa loa a me nā kaʻina hana hoʻāʻo manuahi. He mea paʻakikī kēia i ka loaʻa ʻana o nā hopena pololei me ka hilinaʻi. Eia naʻe, he mea maikaʻi loa ke ʻano no nā ana pili a me nā loiloi hoʻohālikelike ma waena o nā ʻano laʻana like, no ka laʻana me ka hoʻohana ʻana i ka nanoindentation AFM e hoʻokaʻawale i nā cell maʻamau mai nā maʻi kanesa 44, 45.
Ke hoʻāʻo nei i nā mea palupalu me ka nanoindentation AFM, ʻo ke kānāwai maʻamau ka hoʻohana ʻana i kahi ʻimi me kahi punawai haʻahaʻa mau (k) e pili pono ana i ka modulus hāpana a me kahi ʻaoʻao hemispherical/poʻe i ʻole e hou ka ʻimi mua i nā ʻāpana hāpana ma. hui mua me nā mea palupalu. He mea nui hoʻi ka ikaika o ka hōʻailona deflection i hana ʻia e ka probe e ʻike ʻia e ka ʻōnaehana ʻike laser24,34,46,47. I ka hihia o ka ultra-soft heterogeneous cell, tissues and gels, ʻo kekahi paʻakikī e lanakila i ka ikaika adhesive ma waena o ka probe a me ka ʻili hoʻohālike e hōʻoia i nā ana reproducible a hilinaʻi48,49,50. A hiki i kēia manawa, ʻo ka hapa nui o ka hana ma AFM nanoindentation ua kālele i ka noiʻi ʻana i ke ʻano mechanical o nā cell biological, tissues, gels, hydrogels, a me biomolecules me ka hoʻohana ʻana i nā probes spherical nui, i kapa ʻia ʻo colloidal probes (CPs). , 47, 51, 52, 53, 54, 55. ʻO kēia mau ʻōlelo aʻoaʻo he radius o 1 a 50 µm a hana mau ʻia mai ke aniani borosilicate, polymethyl methacrylate (PMMA), polystyrene (PS), silicon dioxide (SiO2) a me daimana- like carbon (DLC) . ʻOiai ʻo CP-AFM nanoindentation ka mea i koho mua ʻia no ka hōʻike ʻana i nā hiʻohiʻona palupalu, aia kona mau pilikia a me nā palena. ʻO ka hoʻohana ʻana i nā ʻōlelo aʻoaʻo spherical nui, micron-sized e hoʻonui i ka nui o ka wahi pili o ka piko me ka laʻana a me ka hopena i kahi poho nui o ka hoʻonā spatial. No nā hiʻohiʻona palupalu a like ʻole, kahi e ʻokoʻa nui ai nā waiwai mechanical o nā mea kūloko mai ka awelika ma kahi ākea, hiki i ka indentation CP ke hūnā i ka like ʻole o nā waiwai ma kahi pālākiō kūloko52. Hana ʻia nā ʻimi Colloidal ma o ka hoʻopili ʻana i nā pōʻai colloidal nui micron i nā cantilevers tipless me ka hoʻohana ʻana i nā mea hoʻopili epoxy. ʻO ke kaʻina hana ponoʻī ua piha i nā pilikia he nui a hiki ke alakaʻi i nā kūlike ʻole i ke kaʻina hana calibration probe. Eia kekahi, pili pono ka nui a me ka nui o nā ʻāpana colloidal i nā ʻāpana calibration nui o ka cantilever, e like me ka resonant frequency, spring stiffness, a me deflection sensitivity56,57,58. No laila, ʻaʻole hiki ke hāʻawi ʻia nā ʻano hana maʻamau no nā ʻōkuhi AFM maʻamau, e like me ka calibration wela, i ka calibration pololei no CP, a pono paha nā ʻano hana ʻē aʻe e hana i kēia mau hoʻoponopono57, 59, 60, 61. e aʻo i nā waiwai o nā laʻana palupalu, kahi e hoʻoulu ai i kahi pilikia ʻē aʻe i ka hoʻohālikelike ʻana i ka ʻano laina ʻole o ka cantilever ma kahi nui. kaawale62,63,64. E noʻonoʻo mau ana nā ʻano hana indentation colloidal hou i ka geometry o ka cantilever i hoʻohana ʻia e calibrate i ka probe, akā e nānā ʻole i ka mana o nā ʻāpana colloidal, ka mea e hoʻonui i ka maopopo ʻole i ka pololei o ke ʻano38,61. Pēlā nō, pili pono ka moduli elastic i helu ʻia e ka hoʻopili ʻana i ke kumu hoʻopili pili i ka geometry o ka indentation probe, a ʻo ka like ʻole ma waena o ka piko a me nā hiʻohiʻona o ka ʻili i hiki ke alakaʻi i ka pololei27, 65, 66, 67, 68. ʻO kekahi mau hana hou a Spencer et al. ʻO nā mea e pono e noʻonoʻo ʻia i ka wā e hoʻohālikelike ai i nā pulupulu polimer palupalu me ka hoʻohana ʻana i ke ʻano nanoindentation CP-AFM. Ua hōʻike lākou i ka paʻa ʻana o kahi wai viscous i loko o nā pulu polimer ma ke ʻano he hana o ka wikiwiki ka hopena i ka hoʻonui ʻana i ka hoʻouka ʻana o ke poʻo a no laila nā ana ʻokoʻa o nā waiwai hilinaʻi wikiwiki30,69,70,71.
I loko o kēia haʻawina, ua ʻike mākou i ka modulus o ka ʻili o ka lehfilcon A CL me ka hoʻohana ʻana i kahi ʻano nanoindentation AFM i hoʻololi ʻia. Hāʻawi ʻia i nā waiwai a me ke ʻano hou o kēia mea, ʻaʻole lawa ka laulā o ke ʻano kuʻuna indentation no ke ʻano o ka modulus o kēia mea palupalu loa, no laila pono e hoʻohana i kahi ʻano nanoindentation AFM me ka ʻike kiʻekiʻe a me ka haʻahaʻa haʻahaʻa. pae. Ma hope o ka nānā ʻana i nā hemahema a me nā pilikia o ka colloidal AFM probe nanoindentation techniques, hōʻike mākou i ke kumu i koho ai mākou i kahi mea liʻiliʻi liʻiliʻi, hoʻolālā ʻia ʻo AFM probe e hoʻopau i ka naʻau, ka walaʻau hope, kahi kikoʻī o ka pilina, ana i ka modulus velocity o nā mea heterogeneous palupalu e like me ka paʻa ʻana o ka wai. hilinaʻi. a me ka helu pololei. Eia kekahi, ua hiki iā mākou ke ana pololei i ke ʻano a me nā ana o ka piko indentation, e ʻae iā mākou e hoʻohana i ke ʻano cone-sphere fit e hoʻoholo ai i ka modulus o ka elasticity me ka ʻole o ka nānā ʻana i ka wahi pili o ka piko me ka mea. ʻO nā manaʻo kuhi ʻelua i helu ʻia ma kēia hana, ʻo ia nā waiwai elastic piha a me ka modulus kūʻokoʻa hohonu indentation. Ke hoʻohana nei i kēia ʻano hana, ua hoʻāʻo mua mākou i nā maʻamau ultra-soft me kahi modulus i ʻike ʻia e helu i ke ʻano, a laila hoʻohana i kēia ʻano hana e hōʻike i ka ʻili o nā mea lens contact like ʻole. ʻO kēia ʻano o ka hoʻohālikelike ʻana i nā ʻili o ka nanoindentation AFM me ka hoʻonui ʻana i ka naʻau i manaʻo ʻia e pili i kahi ākea o nā mea biomimetic heterogeneous ultrasoft me ka hiki ke hoʻohana i nā mea lapaʻau a me nā noi biomedical.
ʻO Lehfilcon A ua koho ʻia nā lens contact (Alcon, Fort Worth, Texas, USA) a me kā lākou silicone hydrogel substrates no nā hoʻokolohua nanoindentation. Ua hoʻohana ʻia kahi mau lens i hoʻolālā kūikawā ʻia i ka hoʻokolohua. No ka hoʻokomo ʻana i ka lens no ka hoʻāʻo ʻana, ua kau pono ʻia ma luna o ke ʻano o ka dome, me ka ʻike ʻole ʻaʻole i komo nā ea i loko, a laila hoʻopaʻa ʻia me nā kihi. ʻO kahi puka i loko o ka mea paʻa ma luna o ka mea paʻa lens e hāʻawi i ke komo i ke kikowaena optical o ka lens no nā hoʻokolohua nanoindentation ʻoiai e paʻa ana ka wai. Mālama kēia i nā lens i ka wai piha. Ua hoʻohana ʻia ʻo 500 μl o ka hopena hoʻopili lens contact ma ke ʻano he hopena hoʻāʻo. No ka hōʻoia ʻana i nā hopena quantitative, ua hoʻomākaukau ʻia nā hydrogels non-activated polyacrylamide (PAAM) i kūʻai ʻia mai kahi hui polyacrylamide-co-methylene-bisacrylamide (100 mm Petrisoft Petri dishes, Matrigen, Irvine, CA, USA), kahi modulus elastic i ʻike ʻia o 1 kPa. E hoʻohana i 4-5 kulu (ma kahi o 125 µl) o ka phosphate buffered saline (PBS mai Corning Life Sciences, Tewkesbury, MA, USA) a me 1 kulu o OPTI-FREE Puremoist contact lens solution (Alcon, Vaud, TX, USA). ) ma ka AFM hydrogel-probe interface.
Ua ʻike ʻia nā laʻana o Lehfilcon A CL a me SiHy substrates me ka hoʻohana ʻana i kahi ʻōnaehana FEI Quanta 250 Field Emission Scanning Electron Microscope (FEG SEM) i lako me kahi Scanning Transmission Electron Microscope (STEM). No ka hoʻomākaukau ʻana i nā laʻana, holoi mua ʻia nā lens me ka wai a ʻokiʻoki ʻia i loko o nā ʻāpana like ʻole. No ka hoʻokō ʻana i kahi ʻokoʻa like ʻole ma waena o nā ʻāpana hydrophilic a me ka hydrophobic o nā laʻana, ua hoʻohana ʻia kahi 0.10% stabilized solution o RuO4 ma ke ʻano he kala, kahi i hoʻokomo ʻia ai nā laʻana no 30 min. He mea nui ka lehfilcon A CL RuO4 staining ʻaʻole wale no ka hoʻokō ʻana i ka hoʻohālikelike ʻokoʻa i hoʻomaikaʻi ʻia, akā kōkua pū nō hoʻi i ka mālama ʻana i ke ʻano o nā pulu polimer lālā i ko lākou ʻano kumu, a laila ʻike ʻia ma nā kiʻi STEM. A laila holoi ʻia lākou a hoʻomaʻemaʻe ʻia i loko o ke ʻano o ka hui ʻana o ka ethanol/wai me ka piʻi ʻana o ka ethanol. A laila hoʻolei ʻia nā laʻana me ka EMBed 812/Araldite epoxy, i hoʻōla ʻia i ka pō ma 70 ° C. Ua ʻoki ʻia nā ʻāpana laʻana i loaʻa ma ka resin polymerization me kahi ultramicrotome, a ua ʻike ʻia nā ʻāpana lahilahi i ʻike ʻia me kahi mea ʻike STEM ma ke ʻano haʻahaʻa haʻahaʻa ma kahi voli wikiwiki o 30 kV. Ua hoʻohana ʻia ka ʻōnaehana SEM like no ka kikoʻī kikoʻī o ka PFQNM-LC-A-CAL AFM probe (Bruker Nano, Santa Barbara, CA, USA). Ua kiʻi ʻia nā kiʻi SEM o ka ʻimi AFM i loko o kahi ʻano maʻamau kiʻekiʻe me ka uila wikiwiki o 30 kV. E kiʻi i nā kiʻi ma nā kihi ʻokoʻa a me ka hoʻonui ʻana e hoʻopaʻa i nā kikoʻī āpau o ke ʻano a me ka nui o ka piko probe AFM. Ua ana ʻia ma ke ʻano kikohoʻe nā ʻāpana kihi a pau o ka hoihoi i nā kiʻi.
Ua hoʻohana ʻia ka Dimension FastScan Bio Icon atomic force microscope (Bruker Nano, Santa Barbara, CA, USA) me ke ʻano "PeakForce QNM in Fluid" e nānā a nanoindentate lehfilcon A CL, SiHy substrate, a me PAAm hydrogel samples. No nā hoʻokolohua kiʻi kiʻi, ua hoʻohana ʻia kahi PEAKFORCE-HIRS-FA probe (Bruker) me kahi radius tip nominal o 1 nm e kiʻi i nā kiʻi hoʻonā kiʻekiʻe o ka hāpana ma ka helu scan o 0.50 Hz. Lawe ʻia nā kiʻi a pau i loko o ka wai.
Ua hana ʻia nā hoʻokolohua nanoindentation AFM me ka hoʻohana ʻana i kahi probe PFQNM-LC-A-CAL (Bruker). Loaʻa i ka ʻimi AFM kahi piko silika ma kahi cantilever nitride 345 nm mānoanoa, 54 µm ka lōʻihi a me 4.5 µm ākea me kahi alapine resonant o 45 kHz. Hoʻolālā ʻia ia e ʻike a hana i nā ana nanomechanical quantitative ma nā laʻana olaola palupalu. Hoʻopili ʻia nā mea ʻike ma ka hale hana me nā hoʻonohonoho puna mua. ʻO nā pūnāwai mau o nā probes i hoʻohana ʻia i kēia haʻawina aia ma ka laulā o 0.05-0.1 N / m. No ka hoʻoholo pololei ʻana i ke ʻano a me ka nui o ka piko, ua hōʻike ʻia ka probe me ka hoʻohana ʻana iā SEM. Ma ka fig. Hōʻike ka Figure 1a i kahi hoʻonā kiʻekiʻe, haʻahaʻa haʻahaʻa scanning electron micrograph o ka probe PFQNM-LC-A-CAL, e hāʻawi ana i kahi ʻike holoʻokoʻa o ka hoʻolālā probe. Ma ka fig. Hōʻike ʻo 1b i kahi ʻike nui o ka piko o ka piko o ka ʻimi, e hāʻawi ana i ka ʻike e pili ana i ke ʻano a me ka nui o ka piko. Ma ka hopena hope loa, ʻo ka nila he hemisphere ma kahi o 140 nm ke anawaena (Fig. 1c). Ma lalo iho o kēia, hoʻopili ka piko i ke ʻano conical, a hiki i ke ana ʻana o ka lōʻihi ma kahi o 500 nm. Ma waho o ka ʻāpana tapering, he cylindrical ka piko a hoʻopau i ka lōʻihi o ka piko o 1.18 µm. ʻO kēia ka ʻāpana hana nui o ka piko probe. Eia hou, ua hoʻohana pū ʻia kahi ʻimi spherical polystyrene (PS) nui (Novascan Technologies, Inc., Boone, Iowa, USA) me ke anawaena o ka piko o 45 µm a me kahi punawai mau o 2 N/m i hoʻohana ʻia no ka hoʻāʻo ʻana ma ke ʻano he colloidal probe. me PFQNM-LC-A-CAL 140 nm probe no ka hoʻohālikelike.
Ua hōʻike ʻia e hiki ke hoʻopaʻa ʻia ka wai ma waena o ka AFM probe a me ka polymer brush structure i ka wā nanoindentation, e hoʻoikaika i ka ikaika i luna ma ka AFM probe ma mua o ka hoʻopā maoli ʻana i ka surface69. Hiki i kēia hopena extrusion viscous ma muli o ka paʻa ʻana o ka wai ke hoʻololi i ka wahi i ʻike ʻia o ka hoʻopili ʻana, a laila pili i nā ana modulus o ka ʻili. No ke aʻo ʻana i ka hopena o ka geometry probe a me ka wikiwiki indentation i ka paʻa ʻana o ka wai, ua hoʻolālā ʻia nā ʻōkuhi ikaika indentation no nā laʻana lehfilcon A CL me ka hoʻohana ʻana i ka ʻimi ʻanawaena 140 nm ma nā helu neʻe mau o 1 µm/s a me 2 µm/s. 45 µm anawaena, hoʻonohonoho ikaika paʻa 6 nN i loaʻa ma 1 µm/s. Ua hoʻokō ʻia nā hoʻokolohua me kahi probe 140 nm i ke anawaena ma ka wikiwiki indentation o 1 µm/s a me ka ikaika hoʻonohonoho o 300 pN, koho ʻia e hana i kahi kaomi hoʻopili i loko o ka pae physiological (1-8 kPa) o ka lihilihi luna. kaomi 72. Ua hoʻāʻo ʻia nā mea hoʻohālike palupalu o PAA hydrogel me ke kaomi o 1 kPa no ka ikaika indentation o 50 pN ma ka wikiwiki o 1 μm / s me ka hoʻohana ʻana i ka probe me ke anawaena o 140 nm.
No ka mea, ʻo ka lōʻihi o ka ʻāpana conical o ka piko o ka PFQNM-LC-A-CAL probe ma kahi o 500 nm, no kēlā me kēia indentation hohonu <500 nm hiki ke noʻonoʻo ʻia ʻo ka geometry o ka probe i ka wā indentation e hoʻomau mau i kāna. kino cone. Eia kekahi, ua manaʻo ʻia ʻo ka ʻili o ka mea i hoʻāʻo ʻia e hōʻike i kahi pane elastic reversible, e hōʻoia ʻia hoʻi ma nā ʻāpana aʻe. No laila, ma muli o ke ʻano a me ka nui o ka piko, ua koho mākou i ke kumu hoʻohālikelike cone-sphere i hoʻomohala ʻia e Briscoe, Sebastian a me Adams, i loaʻa i ka polokalamu o ka mea kūʻai aku, e hoʻoponopono i kā mākou AFM nanoindentation hoʻokolohua (NanoScope). Pūnaehana hoʻokaʻawale ʻikepili ʻikepili, Bruker) 73. Hōʻike ke kŘkohu i ka pilina hoʻoneʻe ikaika F(δ) no ka cone me kahi kīnā pōʻai. Ma ka fig. Hōʻike ka Kiʻi 2 i ka geometry pili i ka wā o ka hoʻopili ʻana o kahi cone ʻoʻoleʻa me kahi kihi pōʻai, kahi ʻo R ka radius o ka piko pōʻai, a ʻo ka radius pili, b ʻo ia ka radius pili ma ka hopena o ka piko pōʻai, δ ka radius pili. ka hohonu indentation, θ ka hapalua huina o ka cone. Hōʻike maopopo ke kiʻi SEM o kēia ʻimi noiʻi i ka hui ʻana o ka piko spherical 140 nm anawaena i loko o kahi cone, no laila ua wehewehe ʻia ka b ma o R wale nō, ʻo ia hoʻi b = R cos θ. Hāʻawi ka polokalamu i hoʻolako ʻia e ka mea kūʻai aku i kahi pilina cone-sphere e helu i nā waiwai o Young modulus (E) mai ka ʻikepili hoʻokaʻawale ikaika e manaʻo ana he > b. Pilina:
kahi F ka ikaika indentation, E ka modulus o Young, ν ka ratio o Poisson. Hiki ke koho ʻia ka radius pili a me ka hoʻohana ʻana i:
Hoʻolālā o ka geometry pili o kahi cone ʻoʻoleʻa me kahi kihi spherical i kaomi ʻia i loko o ka mea o kahi leki hoʻopili Lefilcon me kahi papa o nā pulu polimer lālā.
Ina he ≤ b, e emi ana ka pili i ka hoohalike no ka indenter poepoe maa mau;
Manaʻo mākou ʻo ka hoʻopili ʻana o ka ʻimi indenting me ke ʻano lālā o ka polimer polimer PMPC e ʻoi aku ka nui o ka radius pili a ma mua o ka radius contact spherical b. No laila, no nā ana quantitative a pau o ka elastic modulus i hana ʻia ma kēia haʻawina, ua hoʻohana mākou i ka hilinaʻi i loaʻa no ka hihia a > b.
Ua kiʻi ʻia nā mea biomimetic ultrasoft i aʻo ʻia i loko o kēia haʻawina me ka hoʻohana ʻana i ka scanning transmission electron microscopy (STEM) o ka hāpana kea a me ka microscopy atomic force (AFM) o ka ʻili. Ua hana ʻia kēia ʻano kikoʻī kikoʻī ma ke ʻano he hoʻonui o kā mākou hana i paʻi ʻia ma mua, kahi i hoʻoholo ai mākou i ka dynamically branched polymeric brush structure o ka PMPC-modified lehfilcon A CL surface i hōʻike i nā ʻano mechanical like me ka ʻiʻo corneal maoli 14. No kēia kumu, ʻike mākou i nā ʻili o nā lens pili i nā mea biomimetic14. Ma ka fig. 3a,b hōʻike i nā ʻāpana keʻa o nā lālā polimer polimer PMPC i hoʻopili ʻia ma ka ʻili o ka lehfilcon A CL substrate a me kahi substrate SiHy i mālama ʻole ʻia. Hoʻopili houʻia nāʻili o nā hōʻailonaʻelua me ka hoʻohanaʻana i nā kiʻi AFM kiʻekiʻe, i hōʻoia hou i nā hopena o ka hōʻike STEM (Fig. 3c, d). Hoʻohui pū ʻia, hāʻawi kēia mau kiʻi i kahi lōʻihi o ka PMPC branched polymer brush structure ma 300-400 nm, he mea koʻikoʻi no ka unuhi ʻana i nā ana nanoindentation AFM. ʻO kahi ʻike nui ʻē aʻe i loaʻa mai nā kiʻi, ʻo ka ʻano o ka ʻili āpau o ka mea biomimetic CL he ʻano morphologically ʻokoʻa mai ko ka SiHy substrate material. Hiki ke ʻike ʻia kēia ʻokoʻa i kā lākou morphology ili i ka wā o kā lākou pilina mechanical me ka indenting AFM probe a ma hope o nā helu modulus i ana ʻia.
Nā kiʻi STEM cross-sectional o (a) lehfilcon A CL a me (b) SiHy substrate. ʻO ka pā unahi, 500 nm. Nā kiʻi AFM o ka ʻili o ka lehfilcon A CL substrate (c) a me ka base SiHy substrate (d) (3 µm × 3 µm).
ʻO nā polymers bioinspired a me nā hale polimer polimer he palupalu maoli a ua aʻo nui ʻia a hoʻohana ʻia i nā noi biomedical74,75,76,77. No laila, he mea nui ka hoʻohana ʻana i ke ʻano nanoindentation AFM, hiki ke ana pololei a hilinaʻi i kā lākou mau mea mechanical. Akā i ka manawa like, ʻo nā waiwai kūʻokoʻa o kēia mau mea palupalu loa, e like me ka modulus elastic haʻahaʻa loa, ka nui o ka wai wai a me ka elasticity kiʻekiʻe, e paʻakikī pinepine i ke koho ʻana i ka mea kūpono, ke ʻano a me ke ʻano o ka indenting probe. nui. He mea nui kēia i ʻole e hou ka indenter i ka ʻili palupalu o ka laʻana, e alakaʻi i nā hewa i ka hoʻoholo ʻana i ke kiko o ka pilina me ka ʻili a me ka wahi o ka hoʻopili.
No kēia mea, he mea nui ka ʻike piha o ka morphology o nā mea biomimetic ultra-soft (lehfilcon A CL). ʻO ka ʻike e pili ana i ka nui a me ke ʻano o nā pulupulu polymer branched i loaʻa me ka hoʻohana ʻana i ke ʻano kiʻi kiʻi e hāʻawi i ke kumu no ka ʻike mechanical o ka ʻili me ka hoʻohana ʻana i nā ʻenehana nanoindentation AFM. Ma kahi o ka micron-spherical spherical colloidal probes, ua koho mākou i ka PFQNM-LC-A-CAL silicon nitride probe (Bruker) me ke anawaena piko o 140 nm, i hoʻolālā kūikawā ʻia no ka palapala ʻana i ka nui o nā waiwai mechanical o nā laʻana olaola 78, 79, 80 , 81, 82, 83, 84 ʻO ke kumu o ka hoʻohana ʻana i nā ʻimi ʻoi loa i hoʻohālikelike ʻia me Hiki ke wehewehe ʻia nā probes colloidal maʻamau e nā hiʻohiʻona hana o ka mea. I ka hoʻohālikelike ʻana i ka nui o ka probe tip (~ 140 nm) me nā pulupulu polymer branched ma ka ʻili o CL lehfilcon A, i hōʻike ʻia ma ka Fig. 3a, hiki ke hoʻoholo ʻia he nui ka piko e hiki ai ke hoʻopili pololei me kēia mau hale palaki. e hoemi ana i ka hikiwawe o ka piko e hou aku ia lakou. No ka hōʻikeʻana i kēia wahi, ma ka Fig. 4 he kiʻi STEM o ka lehfilcon A CL a me ka piko indenting o ka AFM probe (kauʻia i ka unahi).
Hōʻike kiʻi kiʻi STEM o lehfilcon A CL a me kahi ʻimi indentation ACM (kau ʻia i ka unahi).
Eia hou, ua liʻiliʻi ka nui o ka piko o 140 nm e pale aku i ka pilikia o kekahi o nā hopena extrusion sticky i hōʻike mua ʻia no nā pulu polimer i hana ʻia e ka CP-AFM nanoindentation method69,71. Manaʻo mākou ma muli o ke ʻano cone-spherical kūikawā a me ka liʻiliʻi liʻiliʻi o kēia tip AFM (Fig. 1), ʻo ke ʻano o ka pihi ikaika i hana ʻia e lehfilcon A CL nanoindentation ʻaʻole ia e hilinaʻi i ka wikiwiki indentation a i ʻole ka wikiwiki hoʻouka / wehe ʻana. . No laila, ʻaʻole pili ia i nā hopena poroelastic. No ka hoʻāʻo ʻana i kēia kuhiakau, ua hoʻokomo ʻia nā laʻana lehfilcon A CL ma kahi ikaika paʻa paʻa me ka hoʻohana ʻana i ka probe PFQNM-LC-A-CAL, akā ma nā velocities ʻelua ʻelua, a ua hoʻohana ʻia nā ʻōkuhi tensile a me ka hoʻihoʻi ʻana e hoʻolālā i ka ikaika (nN) i ka hoʻokaʻawale (µm) hōʻike ʻia ma ke Kiʻi 5a. Ua akaka loa ka wili ana o ka ikaika i ka hoouka ana a me ka wehe ana, a aole he hoike maopopo e hoonui ana ka au ikaika i ka hohonu indentation zero me ka wikiwiki o ka indentation ma ke kii, e manao ana ua ikeia kela mea keia mea pulupulu me ka hopena poroelastic. ʻO ka ʻokoʻa, ʻike ʻia nā hopena paʻa wai (extrusion viscous a me nā hopena poroelasticity) no ka 45 µm diameter AFM probe ma ka wikiwiki indentation like a ua hōʻike ʻia e ka hysteresis ma waena o nā pihi kikoʻī a hoʻihoʻi, e like me ka hōʻike ʻana ma ka Figure 5b. Kākoʻo kēia mau hualoaʻa i ke kuhiakau a manaʻo ʻia he koho maikaʻi nā probes anawaena 140 nm no ka ʻike ʻana i ia mau mea palupalu.
lehfilcon A CL indentation kaha pihi me ka ACM; (a) me ka hoʻohana ʻana i kahi ʻimi me ke anawaena o 140 nm i ʻelua mau hoʻouka ʻana, e hōʻike ana i ka loaʻa ʻole o kahi hopena poroelastic i ka wā o ka ʻili o ka ʻili; (b) me ka hoʻohana ʻana i nā probes me ke anawaena o 45 µm a me 140 nm. s hōʻike i nā hopena o ka extrusion viscous a me ka poroelasticity no nā probes nui i hoʻohālikelike ʻia me nā probes liʻiliʻi.
No ka hoʻohālikelike ʻana i nā ʻili ultrasoft, pono e loaʻa i nā ala nanoindentation AFM ka ʻimi maikaʻi loa e aʻo ai i nā waiwai o ka mea i aʻo ʻia. Ma waho aʻe o ke ʻano o ka piko a me ka nui, ʻo ka naʻau o ka ʻōnaehana ʻike AFM, ka ʻike i ka deflection tip i loko o ke kaiapuni hoʻāʻo, a me ka ʻoʻoleʻa cantilever he mea nui i ka hoʻoholo ʻana i ka pololei a me ka hilinaʻi o ka nanoindentation. ana ana. No kā mākou ʻōnaehana AFM, ʻo ka palena o ka Position Sensitive Detector (PSD) o ka ʻike ʻana ma kahi o 0.5 mV a ua hoʻokumu ʻia ma ka helu puna wai i hoʻopaʻa ʻia ma mua a me ka naʻau deflection wai i helu ʻia o ka probe PFQNM-LC-A-CAL, e pili ana i ka ʻike haʻawe theoretical. emi iho ma lalo o 0.1 pN. No laila, ʻae kēia ʻano hana i ke ana ʻana o ka ikaika indentation liʻiliʻi ≤ 0.1 pN me ka ʻole o kahi ʻāpana leo peripheral. Eia naʻe, aneane hiki ʻole i kahi ʻōnaehana AFM ke hōʻemi i ka leo peripheral i kēia pae ma muli o nā kumu e like me ka haʻalulu mechanical a me ka hoʻoikaika wai. Hoʻopili kēia mau mea i ka ʻike holoʻokoʻa o ke ʻano nanoindentation AFM a loaʻa pū kekahi i kahi hōʻailona leo hope ma kahi o ≤ 10 pN. No ka ʻike ʻana i ka ʻili, ua hoʻokomo ʻia nā mea hoʻohālike lehfilcon A CL a me SiHy substrate ma lalo o nā kūlana hydrated piha me ka hoʻohana ʻana i ka 140 nm probe no ka hōʻike SEM, a ua hoʻopili ʻia nā pihi ikaika ma waena o ka ikaika (pN) a me ke kaomi. Hōʻike ʻia ka ʻāpana hoʻokaʻawale (µm) ma ke Kiʻi 6a. Hoʻohālikelike ʻia me ka substrate base SiHy, hōʻike maopopo ka lehfilcon A CL force curve i kahi pae hoʻololi e hoʻomaka ana ma kahi o ka hoʻopili ʻana me ka pulupulu polymer forked a me ka hoʻopau ʻana me kahi hoʻololi ʻoi i ka pili ʻana o ka piko me ka mea i lalo. ʻO kēia ʻāpana hoʻololi o ka pihi ikaika e hōʻike ana i ka ʻano elastic maoli o ka pulupulu polimer lālā ma luna o ka ʻili, e like me ka ʻike ʻia e ka pihi hoʻopiʻi e pili kokoke ana i ka ʻae ʻana a me ka ʻokoʻa o nā waiwai mechanical ma waena o ka hoʻolālā pulupulu a me nā mea nui SiHy. I ka hoʻohālikelike ʻana i ka lefilcon. ʻO ka hoʻokaʻawale ʻana o ka lōʻihi awelika o kahi pulupulu polimer lālā i ke kiʻi STEM o ka PCS (Fig. 3a) a me kona kaha kaha ma ka abscissa ma Fig. 3a. Hōʻike ka 6a e hiki i ke ala ke ʻike i ka piko a me ka polymer branched e hiki ana i ka piko o ka ʻili. Hoʻopili ma waena o nā hale palaki. Eia kekahi, ʻaʻohe hopena o ka mālama ʻana i ka wai. I kēia hihia, ʻaʻohe adhesion ma waena o ka nila a me ka ʻili o ka hāpana. ʻO nā ʻāpana kiʻekiʻe loa o nā ʻōkuhi ikaika no nā laʻana ʻelua e uhi ana, e hōʻike ana i ka like ʻana o nā waiwai mechanical o nā mea substrate.
(a) AFM nanoindentation kaha pihi no ka lehfilcon A CL substrates a me SiHy panina, (b) kaha pihi e hōʻike ana i ka helu helu kuhi me ka hoʻohana ʻana i ke ʻano paepae leo leo hope.
No ke aʻo ʻana i nā kikoʻī ʻoi aku ka maikaʻi o ka pihi ikaika, ua hoʻolālā hou ʻia ka ʻāʻī o ka lehfilcon A CL ma ke kiʻi 6b me ka ikaika nui o 50 pN ma ka axis y. Hāʻawi kēia pakuhi i ka ʻike koʻikoʻi e pili ana i ka walaʻau kumu. Aia ka walaʻau ma ka laulā o ± 10 pN, i hoʻohana ʻia e hoʻoholo pololei i ka wahi hoʻopili a helu i ka hohonu indentation. E like me ka mea i hōʻike ʻia ma ka palapala, he mea koʻikoʻi ka ʻike ʻana i nā wahi pili e loiloi pono i nā waiwai waiwai e like me modulus85. Ua hōʻike ʻia kahi ala e pili ana i ka hoʻoili ʻakomi ʻana i ka ʻikepili curve force i kahi kūpono maikaʻi ma waena o ka hoʻopili ʻana i ka ʻikepili a me nā ana quantitative no nā mea palupalu86. Ma kēia hana, maʻalahi a maʻalahi kā mākou koho ʻana i nā wahi pili, akā aia kona mau palena. ʻO kā mākou ʻano conservative i ka hoʻoholo ʻana i kahi o ka hoʻopili ʻana e hopena paha i nā waiwai modulus i hoʻohālikelike ʻia no nā hohonu indentation liʻiliʻi (<100 nm). ʻO ka hoʻohana ʻana i ka algorithm-based touchpoint detection and automated data processing hiki ke hoʻomau i kēia hana i ka wā e hiki mai ana e hoʻomaikaʻi hou i kā mākou hana. No laila, no ka leo intrinsic background ma ke kauoha o ± 10 pN, wehewehe mākou i ka helu hoʻopili e like me ka helu ʻikepili mua ma ka x-axis ma ke Kiʻi 6b me ka waiwai o ≥10 pN. A laila, e like me ka paepae leo o 10 pN, kahi laina kuʻekuʻe ma ke kiʻekiʻe o ~ 0.27 µm e hōʻailona ana i ke kiko o ka hoʻopili ʻana me ka ʻili, ma hope o ka hoʻomau ʻana o ka pihi kikoo a hiki i ka hui ʻana o ka substrate i ka hohonu indentation o ~ 270 nm. ʻO ka mea e mahalo ai, ma muli o ka nui o nā hiʻohiʻona polimer brushed branched (300-400 nm) i ana ʻia me ka hoʻohana ʻana i ke ʻano kiʻi, ka hohonu o ka indentation o ka CL lehfilcon ʻO kahi laʻana i ʻike ʻia me ka hoʻohana ʻana i ke ʻano paepae leo hope ma kahi o 270 nm, kahi kokoke loa i. ka nui ana me STEM. Ke hōʻoia hou nei kēia mau hopena i ka hoʻohālikelike a me ka hoʻopili ʻana o ke ʻano a me ka nui o ka ʻaoʻao o ka AFM probe tip no ka hoʻokomo ʻana i kēia ʻano polimer polimer palupalu palupalu a me ka elastic branched. Hāʻawi kēia ʻikepili i nā hōʻike ikaika e kākoʻo i kā mākou ala o ka hoʻohana ʻana i ka walaʻau hope ma ke ʻano he paepae no ke kuhikuhi ʻana i nā wahi pili. No laila, ʻo nā hopena quantitative i loaʻa mai ka hoʻohālike makemakika a me ka hoʻopili ʻana i ka pihi ikaika e pololei.
ʻO nā ana nui e nā ʻano nanoindentation AFM e hilinaʻi nui ʻia i nā hiʻohiʻona makemakika i hoʻohana ʻia no ke koho ʻikepili a me ka nānā ʻana ma hope. No laila, he mea nui e noʻonoʻo i nā mea āpau e pili ana i ke koho ʻana o ka indenter, nā waiwai waiwai a me nā mechanics o kā lākou pilina ma mua o ke koho ʻana i kahi kumu hoʻohālike. I kēia hihia, ua hōʻike maikaʻi ʻia ka geometry tip me ka hoʻohana ʻana i nā micrographs SEM (Fig. 1), a ma muli o nā hopena, ʻo ka 140 nm diameter AFM nanoindenting probe me kahi cone paʻakikī a me ka spherical tip geometry he koho maikaʻi no ka hoʻohālikelike ʻana i nā laʻana lehfilcon A CL79. . ʻO kekahi mea nui e pono e loiloi pono ʻia ʻo ka elasticity o ka mea polymer e hoʻāʻo ʻia. ʻOiai ʻo ka ʻikepili mua o ka nanoindentation (Fig. 5a a me 6a) e wehewehe pono i nā hiʻohiʻona o ka overlapping o ka ʻāʻī a me nā pihi kaomi, ʻo ia hoʻi, ka hoʻihoʻi ʻana i ka elastic piha o ka mea, he mea nui loa ia e hōʻoia i ke ʻano elastic maoli o nā pilina. . No kēia hopena, ua hana ʻia ʻelua indentations ma ka wahi like ma ka ʻili o ka lehfilcon A CL sample ma ka helu indentation o 1 µm/s ma lalo o nā kūlana hydration piha. Hōʻike ʻia ka ʻikepili curve ikaika i ka fig. 7 a, e like me ka mea i manaʻo ʻia, ʻaneʻane like ka hoʻonui ʻana a me ka pihi kaomi o nā paʻi ʻelua, e hōʻike ana i ka elasticity kiʻekiʻe o ka hoʻolālā polimer polimer branched.
ʻElua mau ʻāpana ikaika indentation ma kahi like ma ka ʻili o ka lehfilcon A CL e hōʻike ana i ka elasticity kūpono o ka ʻili o ka lens.
Ma muli o ka ʻike i loaʻa mai nā kiʻi SEM a me STEM o ka piko probe a me ka ʻili lehfilcon A CL, kēlā me kēia, ʻo ke ʻano cone-sphere he hiʻohiʻona makemakika kūpono o ka launa ʻana ma waena o ka piko probe AFM a me ka mea polymer palupalu i hoʻāʻo ʻia. Eia kekahi, no kēia ʻano hoʻohālike cone-sphere, ʻo nā manaʻo kumu e pili ana i nā waiwai elastic o ka mea i paʻi ʻia e paʻa no kēia mea biomimetic hou a hoʻohana ʻia e helu i ka modulus elastic.
Ma hope o ka loiloi piha ʻana i ke ʻano nanoindentation AFM a me kāna mau ʻāpana, me nā waiwai indentation probe (ke ʻano, ka nui, a me ka ʻoʻoleʻa o ka pūnāwai), sensitivity (ka walaʻau hope a me ka helu helu helu), a me nā hiʻohiʻona kūpono (nā ana modulus quantitative), ʻo ia ke ʻano. hoʻohana ʻia. hōʻike i nā laʻana ultra-soft i kūʻai ʻia e hōʻoia i nā hopena quantitative. ʻO kahi hydrogel polyacrylamide pāʻoihana (PAAM) me kahi modulus elastic o 1 kPa i hoʻāʻo ʻia ma lalo o nā kūlana hydrated me ka hoʻohana ʻana i kahi probe 140 nm. Hāʻawi ʻia nā kikoʻī o ka hoʻāʻo ʻana a me ka helu ʻana i ka module ma ka ʻIke Hoʻohui. Ua hōʻike ʻia nā hopena he 0.92 kPa ka awelika modulus i ana ʻia, a ʻo ka %RSD a me ka pākēneka (%) deviation mai ka modulus i ʻike ʻia ma lalo o 10%. Hōʻoia kēia mau hopena i ka pololei a me ka hana hou ʻana o ke ʻano nanoindentation AFM i hoʻohana ʻia i kēia hana e ana i ka moduli o nā mea ultrasoft. Ua hōʻike hou ʻia nā ʻili o nā laʻana lehfilcon A CL a me ka substrate base SiHy me ka hoʻohana ʻana i ke ʻano nanoindentation AFM like e aʻo ai i ka modulus hoʻopili ʻike ʻia o ka ʻili ultrasoft ma ke ʻano he hana o ka hohonu indentation. Ua hana ʻia nā ʻōkuhi hoʻokaʻawale ikaika indentation no ʻekolu specimens o kēlā me kēia ʻano (n = 3; hoʻokahi indentation no specimen) ma ka ikaika o 300 pN, ka wikiwiki o 1 µm/s, a me ka hydration piha. Ua hoʻohālikelike ʻia ke kaʻe kaʻana like ʻana me ka hoʻohana ʻana i ke ʻano cone-sphere. No ka loaʻa ʻana o ka modulus i hilinaʻi ʻia i ka hohonu indentation, ua hoʻonohonoho ʻia kahi ʻāpana ākea 40 nm o ka pihi ikaika i kēlā me kēia piʻi ʻana o 20 nm e hoʻomaka ana mai kahi o ka hoʻopili ʻana, a ua ana ʻia nā waiwai o ka modulus i kēlā me kēia pae o ka pihi ikaika. Spin Cy et al. Ua hoʻohana ʻia kahi ala like e ʻike ai i ka gradient modulus o ka poly(lauryl methacrylate) (P12MA) polymer brushes me ka hoʻohana ʻana i ka nanoindentation colloidal AFM probe, a ua kūlike lākou me ka ʻikepili me ka hoʻohana ʻana i ke kumu hoʻohālikelike Hertz. Hāʻawi kēia ala i kahi ʻāpana o ka modulus pili pili (kPa) me ka hohonu indentation (nm), e like me ka hōʻike ʻana ma ke Kiʻi 8, e hōʻike ana i ka modulus pili ʻikea/gradient hohonu. ʻO ka modulus elastic i helu ʻia o ka CL lehfilcon A ma kahi o 2-3 kPa i loko o ka 100 nm luna o ka hāpana, ma waho aʻe o ka hoʻomaka ʻana e hoʻonui me ka hohonu. Ma ka ʻaoʻao ʻē aʻe, i ka wā e hoʻāʻo ai i ka substrate base SiHy me ka ʻole o kahi kiʻiʻoniʻoni e like me ka pulupulu ma luna o ka ʻili, ʻo ka hohonu indentation kiʻekiʻe loa i loaʻa ma ka ikaika o 300 pN ma lalo o 50 nm, a ʻo ka waiwai modulus i loaʻa mai ka ʻikepili ma kahi o 400 kPa. , i hoʻohālikelike ʻia i nā waiwai o ka modulus Young no nā mea nui.
ʻIke ʻia ka modulus contact (kPa) vs. indentation depth (nm) no ka lehfilcon A CL a me SiHy substrates me ka hoʻohana ʻana i ke ʻano nanoindentation AFM me ka geometry cone-sphere e ana i ka modulus.
ʻO ka ʻili kiʻekiʻe o ka moʻolelo biomimetic branched polymer brush structure hōʻike i kahi modulus haʻahaʻa loa o ka elasticity (2-3 kPa). E hoʻohālikelike kēia i ka hopena e kau wale ʻia ana o ka pulupulu polimer forked e like me ka mea i hōʻike ʻia ma ke kiʻi STEM. ʻOiai aia kekahi mau hōʻike o kahi gradient modulus ma ka ʻaoʻao o waho o ka CL, ʻoi aku ka mana o ka substrate modulus kiʻekiʻe. Eia nō naʻe, ʻo ka 100 nm kiʻekiʻe o ka ʻili i loko o 20% o ka lōʻihi o ka polimer polimer branched, no laila he mea kūpono ke manaʻo ʻia ʻo nā helu ana o ka modulus i kēia pae hohonu indentation he pololei a ʻaʻole ikaika. pili i ka hopena o ka mea lalo.
Ma muli o ka hoʻolālā biomimetic kū hoʻokahi o ka lehfilcon A contact lens, nona nā lālā polimer polimer PMPC i hoʻopili ʻia ma luna o ka ʻili o nā substrates SiHy, he paʻakikī loa ka hilinaʻi ʻana i nā ʻano mechanical o ko lākou mau ʻili honua me ka hoʻohana ʻana i nā ʻano ana maʻamau. Maʻaneʻi mākou e hōʻike nei i kahi ʻano nanoindentation AFM holomua no ka hōʻike pololei ʻana i nā mea ultra-soft e like me lefilcon A me ka wai kiʻekiʻe a me ka elasticity kiʻekiʻe loa. Hoʻokumu ʻia kēia ʻano hana ma ka hoʻohana ʻana i kahi ʻimi AFM nona ka nui o ka piko a me ka geometry i koho pono ʻia e hoʻohālikelike i nā ana o nā hiʻohiʻona ultra-soft surface e paʻi ʻia. ʻO kēia hui pū ʻana o nā ana ma waena o ka probe a me ka hoʻolālā e hoʻonui i ka naʻau, e ʻae iā mākou e ana i ka modulus haʻahaʻa a me nā waiwai elastic o nā mea polimer brushed branched, me ka nānā ʻole i nā hopena poroelastic. Ua hōʻike nā hualoaʻa i nā polimer polimer PMPC lālā kū hoʻokahi i ʻike ʻia i ka ʻili o ka lens he modulus elastic haʻahaʻa loa (a hiki i 2 kPa) a me ka elasticity kiʻekiʻe loa (kokoke i 100%) ke hoʻāʻo ʻia i loko o kahi wai. ʻO nā hopena o ka nanoindentation AFM ua ʻae iā mākou e ʻike i ka modulus contact modulus/gradient hohonu (30 kPa/200 nm) o ka ʻili lens biomimetic. Ma muli paha o ka ʻokoʻa modulus ma waena o nā pulupulu polimer lālā a me ka substrate SiHy, a i ʻole ke ʻano lālā o nā pulu polimer, a i ʻole ka hui pū ʻana o ia mau mea. Eia nō naʻe, pono nā noiʻi hohonu hou e hoʻomaopopo pono i ka pilina ma waena o ka hoʻolālā a me nā waiwai, ʻoi aku ka hopena o ka lālā o ka pulupulu ma nā waiwai mechanical. Hiki i nā ana like ke kōkua i ka ʻike ʻana i nā waiwai mechanical o ka ʻili o nā mea ʻē aʻe ultra-soft a me nā mea lapaʻau.
Loaʻa nā waihona ʻikepili i hana ʻia a/a i ʻike ʻia i ka wā o ke aʻo ʻana i kēia manawa mai nā mea kākau ma muli o ke noi kūpono.
Rahmati, M., Silva, EA, Reseland, JE, Hayward, K. a me Haugen, HJ Nā hopena olaola i nā waiwai kino a me nā kemika o ka ʻili o nā biomaterials. Kemika. kaiaulu. ʻO Ed. 49, 5178–5224 (2020).
Chen, FM a me Liu, X. Hoʻomaikaʻi i nā biomaterial i loaʻa i ke kanaka no ka ʻenekinia kiko. hoʻolālā. polimer. ka ʻepekema. 53, 86 (2016).
Sadtler, K. et al. Hoʻolālā, hoʻokō lapaʻau, a me ka pane kūlohelohe o nā biomaterials i ka lāʻau regenerative. Lahui Matt Rev. 1, 16040 (2016).
ʻO Oliver WK a me Farr GM He ala i hoʻomaikaʻi ʻia no ka hoʻoholo ʻana i ka paʻakikī a me ka modulus elastic me ka hoʻohana ʻana i nā hoʻokolohua indentation me nā ana a me nā ana hoʻoneʻe. J. Alma mater. pahu waihona. 7, 1564–1583 (2011).
Wally, SM Nā kumu mōʻaukala o ka hoʻāʻo paʻakikī indentation. alma mater. ka ʻepekema. ʻenehana. 28, 1028–1044 (2012).
Broitman, E. Indentation Hardness Ana ma ka Macro-, Micro-, a me Nanoscale: He Manaʻo Koʻikoʻi. ʻohana. Wright. 65, 1–18 (2017).
ʻO Kaufman, JD a me Clapperich, SM Surface detection errors e alakaʻi i ka modulus overestimation i ka nanoindentation o nā mea palupalu. J. Mecha. ʻAno. ʻEpekema Biomedical. alma mater. 2, 312–317 (2009).
Karimzade A., Koloor SSR, Ayatollakhi MR, Bushroa AR a me Yahya M.Yu. ʻO ka loiloiʻana i keʻano nanoindentation no ka hoʻoholoʻana i nāʻano mechanical o nā nanocomposites heterogeneous me ka hoʻohanaʻana i nāʻano hoʻokolohua a me ka helu. ka ʻepekema. Hale 9, 15763 (2019).
Liu, K., VanLendingham, MR, a me Owart, TS Mechanical characterization of soft viscoelastic gels by indentation and optimization-based inverse finite element analysis. J. Mecha. ʻAno. ʻEpekema Biomedical. alma mater. 2, 355–363 (2009).
ʻO Andrews JW, Bowen J a me Chaneler D. Hoʻonui i ka hoʻoholo ʻana i ka viscoelasticity me ka hoʻohana ʻana i nā ʻōnaehana ana kūpono. Mea palupalu 9, 5581–5593 (2013).
Briscoe, BJ, Fiori, L. a me Pellillo, E. Nanoindentation o polymeric surfaces. J. Pilikino. D. Noi no ka physics. 31, 2395 (1998).
Miyailovich AS, Tsin B., Fortunato D. a me Van Vliet KJ Hōʻikeʻike o nā waiwai mechanical viscoelastic o nā polymers elastic kiʻekiʻe a me nā mea olaola e hoʻohana ana i ka indentation haʻalulu. Nūpepa o Biomaterials. 71, 388–397 (2018).
Perepelkin NV. huluhulu. alma mater. 129, 198–213 (2019).
Shi, X. et al. Nanoscale morphology a me mechanical properties of biomimetic polymeric surfaces of silicone hydrogel contact lenses. Langmuir 37, 13961–13967 (2021).


Ka manawa hoʻouna: Dec-22-2022